

Inhouse-Training: Machine Learning

Key data

- 5 days of which 1.5 days are on Python introduction and 3.5 days on machine learning
- From 09:00 to 17:00 each day, on the last day from 9:00 to about 15:00.
- Goals: Kick-start into machine learning methods. Through theory and practical application, participants get an overview of which method is suitable for which application and learn how to implement it.
- Course materials may be reused internally.
- Certificates of attendance included
- max. 12 participants
- Required previous knowledge: Basics in programming is advantageous, science or engineering background is advantageous.
- Premises and notebooks with software provided by you.
- For software installation we will send instructions in advance.
- Total cost: 8000 \in , gross, plus travel expenses

Contents

- Python for Machine Learning
 - Basics of programming with Python
 - Efficient data processing with NumPy
 - Visualization of data
 - Data analysis with Pandas
 - Special plot types for data analysis
 - In between there are small practical elements
- Basics of ML and classical methods
 - Machine learning terms and concepts
 - Decision trees with CART & Random Forest
 - Practice element: modeling bike sharing data with Random Forest

- Lazy Learning & k Nearest Neighbors
- Practice element: hyperparameter optimization with k Nearest Neighbors
- Support Vector Machines
- Practice element: Support Vector Machines with different kernels and parameters
- Artificial Neural Networks
 - Dense Neural Networks
 - Practice element: model bike sharing data with neural networks
 - Classification with neural networks
 - Time Series & 1D Convolutional Neural Networks
 - Practice element: 1D Convolutional Neural Networks on a time signal
 - 2D Convolutional Neural Networks
 - Class Activation Maps
 - Practice element: apply class activation maps
 - Practice element: Recognizing Letters with Convolutional Neural Networks
- Feature Engineering & Clustering
 - Imputer & Correlation
 - Practice element: Imputer with machine learning methods
 - Principal Component Analysis (PCA) & Autoencoder
 - Practice element: comparing the performance of PCA with Autoencoder
 - Basics of clustering, k-Means & DBSCAN
 - Practice element: clustering of OECD data on states
 - Discussion and closing session

Contact

- Email: christof.kaufmann@hs-bochum.de
- Phone: +49 2056 5848 16743
- Web: https://we-ai.de